The new DLV Grounder: External
Computations, Interoperability and
Customizability

Francesco Calimeri'2, Davide Fusca', Giovambattista Ianni', Giovanni
Melissari', and Jessica Zangari®

! Department of Mathematics and Computer Science, University of Calabria, Italy,
{calimeri ,fusca,ianni,melissari, zangari}@mat .unical.it
2 DLVSystem Srl, Piazza Vermicelli, Polo Tecnologico UniCal, I-87036 Rende, Italy,
calimeri@dlvsystem.com

Abstract. Z-DLV is the new intelligent grounder of DLV; while relying
on the solid theoretical foundations of its predecessor, it has been re-
designed and re-engineered ex-novo, both in algorithms and data struc-
tures. It now features full support to ASP-Core-2 standard language, de-
ductive database capabilities, increased flexibility, significantly improved
performance, and an extensible design that eases the incorporation of
optimization techniques, language updates and customizability. In this
paper we present Z-DLV, focusing on most recent advancements that
mainly aim at easing the integration with external systems: the handling
of external computations with explicit calls to Python scripts via ex-
ternal atoms, and interoperability mechanisms for the connection with
relational and graph databases via explicit directives for importing/ex-
porting data; furthermore, we discuss how the fine-grained customizabil-
ity means allow to control the the internal grounding process, possibly
positively affecting performance.

Keywords: KRR, Answer Set Programming, Artificial Intelligence, De-
ductive Database Systems, DLV, Grounding, Instantiation

1 Introduction

Z-DLV, the new instantiator of DLV [13], has been recently introduced in [5];
it shows good performance and stability, proving to be competitive both as an
ASP grounder and as a deductive database system.

In this paper, after a brief overview of the system, we present some of the
main recent advancements and ongoing work; we focus on a set of mechanisms
and tools that have been introduced in Z-DLV with the aim of easing the in-
teroperability and integration with external systems. In particular, Z-DLV now
supports calls to Python scripts via external atoms, and connection with rela-
tional and graph databases via explicit directives for importing/exporting data.
The external atoms are inspired by the ones in dlvhex [8], although relational

2 Francesco Calimeri et al.

inputs are not permitted: this choice allowed us to greatly simplify the evalua-
tion strategy and improve the overall performance. Nonetheless, one of the main
goals of the Z-DLV project is to obtain a novel, flexible tool for experiment-
ing with ASP and its applications; to this end, it has been designed in order
to allow a fine-grained control over the whole computational process, both via
command-line options and inline annotations.

2 z-DLV Overview

In the following, we briefly introduce the Z-DLV system; for further details we
refer the reader to the more thorough discussion in [5]. The computational core
of Z-DLV relies on a set of theoretical results and techniques that have already
been proven to be effective in the old DLV grounder [9]. In particular, it follows
a bottom-up evaluation strategy based on a semi-naive approach [14]; this latter
has been extended with a number of optimization techniques that have been
explicitly designed by contextualizing it in the setting of an ASP grounder. Such
techniques include [5,9]: rule body back-jumping, magic-sets, and, in a signifi-
cantly enhanced version, body-reordering and indexing strategies.

The first two techniques have been borrowed from the DLV grounder, and
properly adapted to the new system architecture; the latter two have been sig-
nificantly enhanced and/or extended. In particular, the body reordering tech-
nique now relies on linear interpolations, computing new statistics for variables
involved in comparison predicates for covering cases that previously were not
properly addressed; indexing strategies follow again a create-on-demand policy,
yet featuring a more general approach: both single- and multiple-argument in-
dices are allowed, along with a heuristics which can be used at will for selecting
the best configuration.

Furthermore, a number of additional techniques and features have been de-
signed and newly introduced in Z-DLV, that were not originally present in DLV,
such as the aligning substitutions mechanism, the two-fold management of iso-
lated variables, the anticipated evaluation of strong constraints [5]. As a remark,
the experience over the DLV grounder proved that having a monolithic set of
optimizations, most of which were activated or deactivated at the same time,
does not pay in general. For such reason, even though Z-DLV comes with a
general-purpose default configuration, it has been conceived in order to provide
the user with a fine-grained control over the whole computational process; Z-DLV
allows to enable, disable, and customize every single strategy, hence resulting in
a flexible tool for experimenting with ASP and its applications.

Notably, Z-DLV introduces a new mechanism for further fine-tuning cus-
tomizations, via annotations within the ASP code. One can enrich the input
programs in a Java-like fashion: directives, that are embedded in comments, can
express explicit steering instructions to the internal grounding process, both at
global and rule level, as discussed below. It is worth mentioning also that Z-DLV
fully supports the ASP-Core-2 [3] language standard.

The new DLV Grounder 3
3 Customizability

One of the main goals of the Z-DLV project is to obtain a novel, flexible tool
for experimenting with ASP and its applications; to this end, it has been de-
signed in order to allow a fine-grained control over the whole computational
process. Indeed, all stages and tasks can be controlled, by activating/deactivat-
ing techniques and customizing them by setting proper options via command
line. A comprehensive list of such customization possibilities, along with further
details, is available in [5] and via the online documentation [7].

Besides the command line, system customization and tuning is further eased
by a new special feature of Z-DLV: annotations of ASP code. Annotations and
meta-data have been applied in different programming paradigms and languages;
Java annotations, for instance, have no direct effect on the code they annotate: a
typical usage consists in analysing them at runtime in order to change the code
behaviour.

Z-DLV annotations allow to give explicit directions on the internal grounding
process, at a more fine-grained level with respect to the command-line options:
they “annotate” the ASP code in a Java-like fashion, while embedded in com-
ments: hence, the resulting programs can still be given as input to other ASP
systems that do not support them, without any modification. In particular, our
annotations can have two different scopes: at the global level, meaning that they
are applied to the whole program, or at the rule level, and hence annotations act
just on the rule they precede. Syntactically, all annotations start with the prefix
“%@” and end with a dot (“.”). Among the annotations currently supported,
we mention here those that are meant for customizing two of the major aspects
of the grounding process: body ordering and indexing.

Body ordering heavily affects the efficiency of the rule grounding process: be-
fore grounding a rule, the order of literals in the body is analyzed and possibly
changed in a way inspired by the database setting. Several ordering strategies
have been defined and implemented in Z-DLV, based on different heuristics; they
perform differently, each one featuring some advantages case by case. By means
of annotations, a specific body ordering strategy can be explicitly requested for
any rule, simply preceding it with the line:

%@Qrule_ordering(@value=0Ordering_Type) .

where Ordering_Type is a number representing an ordering strategy [5]. In addi-
tion, it is possible to specify a particular partial order among atoms, no matter
the employed ordering strategy, by means of before and after directives. For
instance, in the next example, Z-DLV is forced to always put literals a(X,Y) and
X = #count{Z : c(Z)}} before literal f(X,Y), whatever the order chosen:

%Qrule_partial_order(
@before={a(X,Y), X=#count{Z:c(Z)}},

4 Francesco Calimeri et al.
@after={f(X,Y)}).

The use of indices for the retrieval of matching instances from the predicate
extensions is another effective optimization technique employable while ground-
ing a rule. Z-DLV’s indexing schema is very general: any predicate argument can
be indexed, allowing both single- and multiple-argument indices, on the basis of
a heuristics that defines a proper default configuration. Z-DLV allows the user
to control the indexing strategy in order to handle situations where the default
behaviour is not satisfactory. In particular, the indexing module can set per each
predicate in the program a single- or multiple-index, on the desired arguments.
Annotations allow to provide directives on a per-atom basis; the next annotation,
for instance, requests that, in the subsequent rule, atom a(X,Y, Z) is indexed, if
possible, with a double-index on the first and third arguments:

%@rule_atom_indexed(@atom=a(X,Y,Z),
@arguments={0,2}) .

Multiple preferences can be expressed via different annotations; in case of
conflicts, priority is given to the first appearing in the program. In addition,
preferences can also be specified at a global scope, by replacing the rule directive
with the global one. Such kind of annotations are applied on the rules, if possible.
While a rule annotation must precede the intended rule, global annotations can
appear at any line in the input program. Both global and rule annotations can
be expressed in the same program; in case of overlap on a particular rule/setting,
priority is given to the more specific rule ones.

Intuitively, the way annotations change the grounding mechanisms can no-
ticeably affect performance on the program at hand; we discuss this also on the
basis of some experimental results in Section 6.

4 External Computations

Z-DLV supports the call to external sources of computations within ASP pro-
grams by means of external atoms in the rule bodies. An external atom of the

form &p(to,...,tn;uo,...,Uy,), where n,m > 0, is an instance of an external
predicate. The name of the external predicate starts with a & symbol, tg, ..., t,
are intended as input terms, and are separated from the output terms uq, . .., Um

@.”

by a semicolon (“;”); note that an input or output term can be either a constant
or a variable. An external literal is either not e or e, where e is an external
atom, and the symbol not represents default negation. An external literal is safe
if its input terms are safe accordingly to the ASP-Core2 definition of safety [4].

Intuitively, output terms are computed on the basis of the input ones, accord-
ing to a semantics which is externally defined; currently, Z-DLV supports such
definition via Python scripts. In particular, for each external predicate &p fea-
turing n/m input/output terms, the user must define a Python function whose
name is p, and featuring n/m input/output parameters. The function has to be

The new DLV Grounder 5

compliant with Python® version 3. Note that each instance of an external pred-
icate must appear with the same number of input and output terms throughout
the program. As an example, let us consider the following rule, that makes use
of an external predicate with two input and one output terms:

compute_sum(X,Y, Z) —number(X), number(Y), X <=Y,&sum(X,Y; Z).

A program containing this rule must come along with the proper definition
of sum within a Python function, as, for instance, the one reported next.

def sum(X,Y):
return X+Y

It is worth noting that the external atoms are completely evaluated by Z-DLV
as true or false; hence, they never appear in the produced instantiation. Each
value returned by the Python function defining an external predicate can be
of one of these types: numeric, boolean or string*. These values are internally
mapped to ground values accordingly to the following default policy: an integer
returned value is mapped to a corresponding numeric constant; all other values
are tentatively associated to a symbolic constant, if the form is compatible to
the ASP-Core-2 syntax, and associated to a string constant in case of failure.
However, Z-DLV allows the user to customize the mapping policy of a particular
external predicate by means of a global annotation of the form

%Qglobal _external predicate_conversion(@predicate=&p,@type=@Ty,...,0TxN).

that specifies the sequence of conversion types for an external predicate &p
featuring n output terms. For instance, if in the program containing the previous
rule the following annotation is added:

%Q@global external predicate_conversion(@predicate=&sum,Qtype=QQ_CONST) .

where Q_CONST stands for quoted string, then for each external call, the output
variable Z is bounded to the value returned by the Python function interpreted as
a quoted string. Further details about options and conversion types are available
at [7]. External atoms can be both functional and relational, i.e., they can return
a single tuple or a set of tuples, as output. In the example, &sum is functional:
the associated Python function returns a single value for each combination of
the input values. In general, a functional external atom with m > 0 output
terms must return a sequence® containing m values. If m = 1, the output can be
either a sequence containing a single value, or just a value, as in the example; if
m = 0, the associated Python function must be boolean. A relational external

3 https://docs.python.org/3
* https://docs.python.org/3/library /stdtypes.html
® https://docs.Python.org/3/library /stdtypes.html#sequence-types-list-tuple-range

6 Francesco Calimeri et al.

atom with m > 0 is defined by a Python function that returns a sequence of
m~sequences, where each inner sequence is composed by m values.

5 Interoperability

As emerged from the previous sections, Z-DLV is intended to ease the interop-
erability of ASP with external sources of knowledge. To further comply with
this purpose, its input language, still supporting ASP-Core-2, has also been en-
riched with explicit directives for connecting with relational and graph databases.
In particular, Z-DLV inherits from DLV directives for importing/exporting data
from/to relational DBs.

For details about syntax and usage, we refer to the online manual [7]; slight
differences with respect to DLV are due to the fact that Z-DLV complies with
the ASP-Core-2 syntax, hence supporting, for instances, predicate names with
multiple arities.

As for graph databases, data can be imported via SPARQL queries, thanks
to new directives that were not featured by DLV. Local DBs in RDF files and
remote SPARQL EndPoints can both be queried by directives of the form:

#import_local_sparql("rdf_file","query",predname,predarity, [,typeConv])
#import_remote_sparql("endpnt_url","query",predname,predarity, [,typeConv])

where query is a SPARQL statement defining data to be imported and
typeConv is optional and specifies the conversion for mapping RDF data types
to ASP-Core-2 terms. For the local import, rdf file can be either a local or
remote URL pointing to an RDF file: in this latter case, the file is downloaded
and treated as a local RDF file; in any case, the graph is built in memory. On the
other hand, for the remote import, the endpnt_url refers to a remote endpoint
and building the graph is up to the remote server; this second option might be
convenient in case of large datasets. Further details are available at [7].

Concerning implementation, for a fast prototyping, we started with a solu-
tion based on external atoms. For instance, for each remote SPARQL import
directive, an auxiliary rule of the following form is added to the input program:
predname(Xo, ..., Xn) i~ &sparql EndPoint(“endpnt_url”, “query”; Xg, ..., XN).
The head atom has predname as name, and contains a number of variables that
corresponds to predarity. The body contains an external atom & sparql EndPoint
in charge of performing the remote query. Intuitively, when grounding the rule,
the extension of the specified predicate will be filled in with information ex-
tracted by the query.

Even though this approach relying on external atoms perfectly reaches the
original goal, there are some reasons in favour of a “native” support for such
features. First of all, it is easy to imagine that native support should enjoy much
better performance, as we discuss in Section 6.3; furthermore, in many scenarios
(as it is often the case in the deductive database settings) the use of external
atoms is not crucial, whilst accessing standard knowledge sources is vital: in such

The new DLV Grounder 7

I-DLV |-DLV+Annotations
Problem #inst.
#solved time #solved time
3rd Comp. - Grammar Based 10 10 76,01 10 22,12
6th Comp. - Complex Optimization 20 20 70,09 20 28,51
6th Comp. - Labyrinth 20 20 2,03 20 0,93
6th Comp. - Nomistery 20 20 4,15 20 2,36

Table 1. Customizability: experimental results.

cases, taking care of the burden of the external Python runtime machinery does
not look useful. Hence, the idea is to incorporate into the system the directives
that are most likely to be used “per se”, and let external atoms address cases
that need extended functionalities.

6 Experimental evaluation

In the following we present the results of some experimental activities that have
been carried out in order to assess performance of the discussed Z-DLV features.

In particular, experiments on customizability and external computations have
been performed on a NUMA machine equipped with two 2.8GHz AMD Opteron
6320 processors and 128 GiB of main memory, running Linux Ubuntu 14.04.5
kernel v. 4.4.0-45-generic. Binaries were generated with the GNU C++ compiler
v. 4.9. As for memory and time limits, we allotted 15 GiB and 600 seconds
for each system, per each single run; while for the interoperability mechanisms,
experiments have been performed on machine equipped with an Intel Core i7-
4770 processor and 16GiB of main memory, running Linux Ubuntu 14.04.5 kernel
v.3.13.0-107-generic. Binaries were generated with the GNU C+4 compiler v.
4.9. As for memory and time limits, we allotted 15 GiB 600 seconds for each
system, per each single run.

6.1 Playing with Customizations

Table 1 shows the impact of using ad-hoc Z-DLV configurations, rather than the
default one, over a set of benchmarks taken from the Third ASP Competition [6],
the Sixth ASP Competition [11]: for each benchmark the custom configuration
has been defined either via command-line options or via inline annotations. It
is easy to see that significant improvements can be obtained by playing with
grounding options. In order to give an idea of why this happens, we illustrate a
couple of interesting cases, namely Labyrinth and Visit-All, where performance
is significantly affected by the possibility to choose different strategies for the
body orderings from rule to rule. Let us consider the rule:

reach(X,Y,T) —reach(XX,YY,T),
dneighbor(D, XX, YY, X|Y),
conn(XX,YY,D,T), conn(X,Y,E,T),

8 Francesco Calimeri et al.
inverse(D, E), step(T).

which is taken from the encoding of Labyrinth. In this case, by annotating the
rule with:

%@Q@rule_partial_order(
@before={inverse(D,E) },
@after={reach(XX,YY,T),
dneighbor (D, XX,YY,X,Y),
conn(XX,YY,D,T), conn(X,Y,E,T),
step(T).}).

that corresponds to ask Z-DLV to select as first literals inverse(D, E) in its order-
ing strategy no matter how the other literals are positioned, average grounding
time over all instances is reduced up to 90%. Similarly, by annotating the fol-
lowing rule in the Visit-all encoding:

%@rule_ordering(@value=5) .
atother(N,T) = connected(C,N), C! = N,
step(T), atrobot(O,T), O! = N.

that requires the use of criterion ords instead of the default one on this specific
rule, the average grounding time computed over all instances reduces by 15%;
the same improvement is obtained with the ordering criterion ordg. Having a
closer look at what changes, we can observe that while the default algorithm
orders the rule body as already reported, the mentioned criteria orders the body
as follows:

atother(N,T) — atrobot(O,T), step(T),
connected(C,N), C! = N, O! = N.

Let us give some insights about the reasons behind the performance improve-
ments. In the case of Labyrinth instances, intuitively, since the extension of the
predicate inverse is very small, it is better to add it as soon as possible, possibly
at first. As for Visit-all, both criteria ords and ordg try to prefer literals bind-
ing output variables (i.e., variables appearing in head or in body literals with
unsolved predicates) in order to facilitate the backjumping mechanism. In that
rule, the output variables are N, T' and O, and thus the literal atrobot(O,T) is
inserted as soon as possible (in fact, it is the one containing the largest number
of output variables).

It is worth noting that in all reported cases, acting at a global scope, as
one could do via command-line options, does not bring the same improvements:
indeed, experiments showed that the gain due to the change of strategy over
the reported rules is overshadowed by corresponding losses over the rest of the
program; the flexible customization means featured by Z-DLV, that allow to

The new DLV Grounder 9

. DLVHEX GRINGO 1-DLV

Problem # inst.

#solved time| #solved time| #solved time
Attachment 10 0 TO 10(149,55 10 45,50
Growth 10 0| TO/MO 9 164,21 10 67,20
Move 10 0| TO/MO 9] 163,89 10 68,08
Contact 10 6 93,05 10 11,21 10 4,94
Disconnect 10 8| 127,72 10 10,85 10 4,86
Discrete 10 8| 127,44 10 10,85 10 4,96
Equal 10 8| 101,07 10 10,95 10 4,93
Externally Connect 10 8| 100,43 10 10,79 10 4,68
Nontangential Proper Part 10 7| 107,14 10 10,89 10 4,88
Overlap 10 6 92,80 10 11,11 10 4,94
Part Of 10 8| 126,56 10 11,00 10 4,93
Partially Overlap 10 8| 126,37 10 11,00 10 4,83
Proper Part 10 6 93,34 10 11,21 10 4,99
Tangential Proper Part 10 7| 106,54 10 10,90 10 4,72
String Concatenation 5 0| TO/MO 5 64,73 5 52,09
Prime Numbers 10 1 93,34 10 21,94 10 13,26
Reachability 10 0| TO/MO 10 36,71 10 37,18
Solved Instances 81/165 163/165 165/165
Total Running Time 59341 8362 3109

Table 2. External computations: experimental results (TO/MO stands for Time/Mem-
ory Out).

configure and fine-tune the grounder as needed, even at a rule level, are exactly
aimed at better dealing with such scenarios.

6.2 External Computations Benchmarks

We compared Z-DLV with other already available systems that support similar
mechanisms for dealing with external sources of computations via Python: the
ASP grounder gringo [10] and the dlvhez [8] system; in particular, we considered
the latest available releases at the time of writing, respectively, clingo 5.2.0
executed with the —--mode=gringo and dlvhex 2.5.0 executed with the default
provided ASP solver that combines gringo 4.5.4 and clasp 3.1.4.

It is worth stating that our aim was not to asses the ASP computation capa-
bilities/performance of the systems; rather, we wanted to assess their efficiency
at integrating external computations: hence, we first properly adapted a set of
already-proposed problems, and then we enriched them with further domains
testing different aspects.

The first set of benchmarks is focused on the spatial representation and
reasoning domain; these problems originally appeared in [15]. In this setting,
two scenarios have been taken into account:

— The first scenario requires the determination of relations among randomly-
generated circular objects in a 2-D space. For each pair of circles one is
interested in knowing which of the following relations hold: having some

10 Francesco Calimeri et al.

contacts, being disconnected, being externally connected, overlapping or par-
tially overlapping, one being part of the other, one being proper part of the
other, one being tangential proper part of the other, one being non-tangential
proper part of the other. For each possible relation, an ASP encoding that
makes use of an external Python script checks if it holds. The encodings have
been paired with instances of increasing sizes containing random generated
circles, from 10 to 190.

— In a second scenario we re-adapted the encodings of Growth, Move and At-
tachment problems introduced in [15], that solves some geometrical problems
over triples of circular objects in a 2D space. Again, instances of increasing
size have been given to the tested systems: in this case, we generated triples
of circles, from 7 to 70.

Notably, ASP-Core-2 only supports integer numbers; hence, the encodings have
been re-adapted in order to result independent from the way data are expressed.
Each object is associated with an identifier, and information about coordinates
and dimensions are stored in a csv file; thus, from the ASP side, objects are
managed via their ids, and computations involving real numbers are handled
externally via the same Python scripts that, in turn, are invoked by the external
mechanisms typical of each tested system. Hence, the encodings reported in [15]
have been carefully translated into ASP-Core-2 encodings. In this respect, it is
worth noticing that in [15] two versions for problem Attachment are reported:
in our setting, due to the described translation, they coincide.

Since the benchmarks introduced above involve non-disjunctive stratified en-
codings and only numeric (integer) constants as ground terms, we considered
three further domains: the reachability problem, where edges are retrieved via
Python scripts; concatenation of two randomly-generated strings with arbitrary
lengths varying from 1000 to 3000 chars; generation of first k prime numbers,
with k ranging from 0 to 100000.

Results, reported in Table 2, show satisfactory performance for Z-DLV, both
in comparison with gringo, which solves approximately the same number of in-
stances but spending larger times, and with dlvhex, which, yet offering a more
complete support for external source of knowledge, suffers from its architecture
that makes use of an ASP solver as a black box.

6.3 Interoperability Benchmarks

We wanted to analyze the effective gain on performance obtainable with a native
support of SQL/SPARQL local import directives against the same directives
implemented via Python scripts (see Section 5). In particular, we compared
two different importing approaches: (1) a version exploiting explicit directives
natively implemented in C++, (2) a latter version where the import mechanism
is performed externally.

The benchmarks are divided into two categories:

— Importing data from a Relational Database, by means of SQL statements. To
this end, a DB containing a randomly generated table has been created: such

The new DLV Grounder 11

Problem I1-DLV-C++ I1-DLV-Python

sql-100K 0,55 1,63
sql-200K 0,98 3,06
sql-300K 1,49 4,58
sql-400K 2,07 6,19
sql-500K 2,47 7,61
sql-600K 2,99 9,20
sql-700K 3,51 10,64
sql-800K 4,17 11,94
sql-900K 4,69 13,24
sgl-1M 5,02 15,19
spargl-lubm -1 7,86 13,92
sparql-lubm-2 16,62 29,49
sparql-lubm-3 25,03 44,39
sparql-lubm-4 31,74 56,86
sparql-lubm-5 38,08 66,85

Table 3. Interoperability: experimental results.

table contains 1000000 tuples and features three columns, one of integer type
and two of alphanumeric type. Several encodings have then been tested, each
one importing a different number of tuples from the aforementioned table,
ranging from 100000 to 1000000. In both cases, each SQL column is mapped,
respectively, to a numeric term, a symbolic constant and a string constant
(we refer the reader to ASP-Core-2 term types [4]).

— SPARQL imports from a local RDF file. In particular, we generated some
OWL ontologies via Data Generator(UBA) [12]. Such ontologies are referred
to a University context: each university has a number of departments ranging
from 15 to 22. The generated encoding selects graduate and undergraduate
students, and each encoding imports the students from a different number
of universities, ranging from 1 to 5.

Results, reported in Table 3, show that the native approach clearly outper-
forms the other by 66% when dealing with SQL directives, and by 43% when
dealing with SPARQL local import directives. Intuitively, an internal manage-
ment of import/export mechanism can be performed directly interfacing C++ and
SQL/SPARQL, while with external atoms Python acts as a mediator causing an
overhead which is not always negligible as our tests evidenced.

7 Conclusion and Ongoing Work

Z-DLV is a project actively under development; besides improvements of the fea-
tures presented above, both in functionalities and performance, further enhance-
ments are planned, and relate to language extensions, customizability means,
performance, and a tight integration with the ASP solver wasp [2] in the new
full-fledged ASP system DLV2 [1]. More in detail, more native directives for
interoperating with external data will be added; the Z-DLV language will be ex-
tended with constructs for explicitly managing complex terms such as prolog-like

12

Francesco Calimeri et al.

lists; the set of annotations for a fine-grained control of the grounding process
will be enlarged; a new set of annotations for integrating and tuning wasp will
be added; in addition, we are studying a proper way of manipulating the pro-
duced ground program in order to better fit with the computational mechanisms
carried out by the solver.

References

1.

10.

11.

12.

13.

Mario Alviano, Francesco Calimeri, Carmine Dodaro, Davide Fusca Nicola Leone,
Simona Perri, Francesco Ricca, Pierfrancesco Veltri, and Jessica Zangari. The ASP
System DLV2. In 1/th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR 2017), Espoo, Finland, volume To appear, 2017.
Mario Alviano, Carmine Dodaro, Nicola Leone, and Francesco Ricca. Advances in
WASP. In LPNMR 2015, Lexington, KY, USA, September 27-30, 2015. Proceed-
ings, pages 40-54, 2015.

Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista lanni, Roland
Kaminski, Thomas Krennwallner, Nicola Leone, Francesco Ricca, and Torsten
Schaub. Asp-core-2: Input language format, 2012.

Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista lanni, Roland
Kaminski, Thomas Krennwallner, Nicola Leone, Francesco Ricca, and Torsten
Schaub. ASP-Core-2: 4th ASP Competition Official Input Language Format, 2013.
https://www.mat.unical.it /aspcomp2013/files/ ASP-CORE-2.01c.pdf.

Francesco Calimeri, Davide Fusca, Simona Perri, and Jessica Zangari. I-DLV: the
new intelligent grounder of DLV. Intelligenza Artificiale, 11(1):5-20, 2017.
Francesco Calimeri, Giovambattista Ianni, and Francesco Ricca. The Third Open
Answer Set Programming Competition. TPLP, 14(1):117-135, 2014.

Francesco Calimeri, Simona Perri, Davide Fusca, and Jessica Zangari. Z-DLV
homepage, since 2016. https://github.com/DeMaCS-UNICAL/I-DLV /wiki.
Thomas Eiter, Michael Fink, Giovambattista Ianni, Thomas Krennwallner,
Christoph Redl, and Peter Schiiller. A model building framework for answer set
programming with external computations. TPLP, 16(4):418-464, 2016.

Wolfgang Faber, Nicola Leone, and Simona Perri. The Intelligent Grounder of
DLV. In Esra Erdem, Joohyung Lee, Yuliya Lierler, and David Pearce, editors,
Correct Reasoning - Essays on Logic-Based Al in Honour of Viadimir Lifschitz,
volume 7265 of LNCS, pages 247-264. Springer, 2012.

Martin Gebser, Roland Kaminski, Arne Koénig, and Torsten Schaub. Advances in
gringo series 3. In LPNMR 2011, Vancouver, Canada, May 16-19, 2011. Proceed-
ings, pages 345-351, 2011.

Martin Gebser, Marco Maratea, and Francesco Ricca. The Design of the Sixth
Answer Set Programming Competition. In Francesco Calimeri, Giovambattista
Tanni, and Miroslaw Truszczynski, editors, Logic Programming and Nonmono-
tonic Reasoning - 13th International Conference, LPNMR 2015, Lexington, KY,
USA, September 27-30, 2015. Proceedings, volume 9345 of LNCS, pages 531-544.
Springer, 2015.

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL
knowledge base systems. Web Semantics: Science, Services and Agents on the
World Wide Web, 3(2):158-182, 2005.

Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Si-
mona Perri, and Francesco Scarcello. The DLV System for Knowledge Represen-
tation and Reasoning. ACM TOCL, 7(3):499-562, July 2006.

The new DLV Grounder 13

14. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Volume
I. Computer Science Press, 1988.

15. Przemyslaw Andrzej Walega, Carl P. L. Schultz, and Mehul Bhatt. Non-Monotonic
Spatial Reasoning with Answer Set Programming Modulo Theories. CoRR,
abs/1606.07860, 2016.

